CaptureBasic.java
6.39 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
package cn.csbr.app.Facerecognition;
import java.awt.Graphics;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.image.BufferedImage;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.WindowConstants;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDouble;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgproc.Imgproc;
import org.opencv.ml.SVM;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.objdetect.HOGDescriptor;
import org.opencv.videoio.VideoCapture;
import org.opencv.videoio.Videoio;
public class CaptureBasic extends JPanel {
private BufferedImage mImg;
private BufferedImage mat2BI(Mat mat) {
int dataSize = mat.cols() * mat.rows() * (int) mat.elemSize();
byte[] data = new byte[dataSize];
mat.get(0, 0, data);
int type = mat.channels() == 1 ?
BufferedImage.TYPE_BYTE_GRAY : BufferedImage.TYPE_3BYTE_BGR;
if (type == BufferedImage.TYPE_3BYTE_BGR) {
for (int i = 0; i < dataSize; i += 3) {
byte blue = data[i + 0];
data[i + 0] = data[i + 2];
data[i + 2] = blue;
}
}
BufferedImage image = new BufferedImage(mat.cols(), mat.rows(), type);
image.getRaster().setDataElements(0, 0, mat.cols(), mat.rows(), data);
return image;
}
public void paintComponent(Graphics g) {
if (mImg != null) {
g.drawImage(mImg, 0, 0, mImg.getWidth(), mImg.getHeight(), this);
}
}
public static void main(String[] args) {
try {
// System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
Mat capImg = new Mat();
VideoCapture capture = new VideoCapture(0);
int height = (int) capture.get(Videoio.CAP_PROP_FRAME_HEIGHT);
int width = (int) capture.get(Videoio.CAP_PROP_FRAME_WIDTH);
if (height == 0 || width == 0) {
throw new Exception("camera not found!");
}
JFrame frame = new JFrame("camera");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
CaptureBasic panel = new CaptureBasic();
panel.addMouseListener(new MouseAdapter() {
@Override
public void mouseClicked(MouseEvent arg0) {
System.out.println("click");
}
@Override
public void mouseMoved(MouseEvent arg0) {
System.out.println("move");
}
@Override
public void mouseReleased(MouseEvent arg0) {
System.out.println("mouseReleased");
}
@Override
public void mousePressed(MouseEvent arg0) {
System.out.println("mousePressed");
}
@Override
public void mouseExited(MouseEvent arg0) {
System.out.println("mouseExited");
//System.out.println(arg0.toString());
}
@Override
public void mouseDragged(MouseEvent arg0) {
System.out.println("mouseDragged");
//System.out.println(arg0.toString());
}
});
frame.setContentPane(panel);
frame.setVisible(true);
frame.setSize(width + frame.getInsets().left + frame.getInsets().right,
height + frame.getInsets().top + frame.getInsets().bottom);
int n = 0;
Mat temp = new Mat();
while (frame.isShowing() && n < 500) {
//System.out.println("第"+n+"张");
capture.read(capImg);
Imgproc.cvtColor(capImg, temp, Imgproc.COLOR_RGB2GRAY);
//Imgcodecs.imwrite("G:/opencv/lw/neg/back"+n+".png", temp);
panel.mImg = panel.mat2BI(detectFace(capImg));
panel.repaint();
//n++;
//break;
}
capture.release();
frame.dispose();
} catch (Exception e) {
System.out.println("例外:" + e);
} finally {
System.out.println("--done--");
}
}
/**
* opencv实现人脸识别
*
* @param img
*/
public static Mat detectFace(Mat img) throws Exception {
System.out.println("Running DetectFace ... ");
// 从配置文件lbpcascade_frontalface.xml中创建一个人脸识别器,该文件位于opencv安装目录中
CascadeClassifier faceDetector = new CascadeClassifier("D:\\TDDOWNLOAD\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
// 在图片中检测人脸
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(img, faceDetections);
//System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
Rect[] rects = faceDetections.toArray();
if (rects != null && rects.length >= 1) {
for (Rect rect : rects) {
Imgproc.rectangle(img, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height),
new Scalar(0, 0, 255), 2);
}
}
return img;
}
/**
* opencv实现人型识别,hog默认的分类器。所以效果不好。
*
* @param img
*/
public static Mat detectPeople(Mat img) {
//System.out.println("detectPeople...");
if (img.empty()) {
System.out.println("image is exist");
}
HOGDescriptor hog = new HOGDescriptor();
hog.setSVMDetector(HOGDescriptor.getDefaultPeopleDetector());
System.out.println(HOGDescriptor.getDefaultPeopleDetector());
//hog.setSVMDetector(HOGDescriptor.getDaimlerPeopleDetector());
MatOfRect regions = new MatOfRect();
MatOfDouble foundWeights = new MatOfDouble();
//System.out.println(foundWeights.toString());
hog.detectMultiScale(img, regions, foundWeights);
for (Rect rect : regions.toArray()) {
Imgproc.rectangle(img, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 0, 255), 2);
}
return img;
}
}